本文共 9169 字,大约阅读时间需要 30 分钟。
Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:
从语法上讲,Synchronized总共有三种用法:
接下来我就通过几个例子程序来说明一下这三种使用方式(为了便于比较,三段代码除了Synchronized的使用方式不同以外,其他基本保持一致)。
package com.paddx.test.concurrent;public class SynchronizedTest { public void method1(){ System.out.println("Method 1 start"); try { System.out.println("Method 1 execute"); Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 1 end"); } public void method2(){ System.out.println("Method 2 start"); try { System.out.println("Method 2 execute"); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 2 end"); } public static void main(String[] args) { final SynchronizedTest test = new SynchronizedTest(); new Thread(new Runnable() { @Override public void run() { test.method1(); } }).start(); new Thread(new Runnable() { @Override public void run() { test.method2(); } }).start(); }}
执行结果如下,线程1和线程2同时进入执行状态,线程2执行速度比线程1快,所以线程2先执行完成,这个过程中线程1和线程2是同时执行的。
Method 1 startMethod 1 executeMethod 2 startMethod 2 executeMethod 2 endMethod 1 end
package com.paddx.test.concurrent;public class SynchronizedTest { public synchronized void method1(){ System.out.println("Method 1 start"); try { System.out.println("Method 1 execute"); Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 1 end"); } public synchronized void method2(){ System.out.println("Method 2 start"); try { System.out.println("Method 2 execute"); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 2 end"); } public static void main(String[] args) { final SynchronizedTest test = new SynchronizedTest(); new Thread(new Runnable() { @Override public void run() { test.method1(); } }).start(); new Thread(new Runnable() { @Override public void run() { test.method2(); } }).start(); }}
执行结果如下,跟代码段一比较,可以很明显的看出,线程2需要等待线程1的method1执行完成才能开始执行method2方法。
Method 1 startMethod 1 executeMethod 1 endMethod 2 startMethod 2 executeMethod 2 end
package com.paddx.test.concurrent; public class SynchronizedTest { public static synchronized void method1(){ System.out.println("Method 1 start"); try { System.out.println("Method 1 execute"); Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 1 end"); } public static synchronized void method2(){ System.out.println("Method 2 start"); try { System.out.println("Method 2 execute"); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 2 end"); } public static void main(String[] args) { final SynchronizedTest test = new SynchronizedTest(); final SynchronizedTest test2 = new SynchronizedTest(); new Thread(new Runnable() { @Override public void run() { test.method1(); } }).start(); new Thread(new Runnable() { @Override public void run() { test2.method2(); } }).start(); } }
执行结果如下,对静态方法的同步本质上是对类的同步(静态方法本质上是属于类的方法,而不是对象上的方法),所以即使test和test2属于不同的对象,但是它们都属于SynchronizedTest类的实例,所以也只能顺序的执行method1和method2,不能并发执行。
Method 1 startMethod 1 executeMethod 1 endMethod 2 startMethod 2 executeMethod 2 end
package com.paddx.test.concurrent;public class SynchronizedTest { public void method1(){ System.out.println("Method 1 start"); try { synchronized (this) { System.out.println("Method 1 execute"); Thread.sleep(3000); } } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 1 end"); } public void method2(){ System.out.println("Method 2 start"); try { synchronized (this) { System.out.println("Method 2 execute"); Thread.sleep(1000); } } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Method 2 end"); } public static void main(String[] args) { final SynchronizedTest test = new SynchronizedTest(); new Thread(new Runnable() { @Override public void run() { test.method1(); } }).start(); new Thread(new Runnable() { @Override public void run() { test.method2(); } }).start(); }}
执行结果如下,虽然线程1和线程2都进入了对应的方法开始执行,但是线程2在进入同步块之前,需要等待线程1中同步块执行完成。
Method 1 startMethod 1 executeMethod 2 startMethod 1 endMethod 2 executeMethod 2 end
先通过反编译下面的代码来看看Synchronized是如何实现对代码块进行同步的
package com.paddx.test.concurrent;public class SynchronizedDemo { public void method() { synchronized (this) { System.out.println("Method 1 start"); } }}
反编译结果
![在这里插入图片描述](https://img-blog.csdn.net/20181007101612202?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3cxNzgxOTE1MjA=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)关于这两条指令的作用,我们直接参考JVM规范中描述: ` Each object is associated with a monitor. A monitor is locked if and only if it has an owner. The thread that executes monitorenter attempts to gain ownership of the monitor associated with objectref, as follows: • If the entry count of the monitor associated with objectref is zero, the thread enters the monitor and sets its entry count to one. The thread is then the owner of the monitor. • If the thread already owns the monitor associated with objectref, it reenters the monitor, incrementing its entry count. • If another thread already owns the monitor associated with objectref, the thread blocks until the monitor’s entry count is zero, then tries again to gain ownership. `
每个对象有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:
monitorexit: ` The thread that executes monitorexit must be the owner of the monitor associated with the instance referenced by objectref. The thread decrements the entry count of the monitor associated with objectref. If as a result the value of the entry count is zero, the thread exits the monitor and is no longer its owner. Other threads that are blocking to enter the monitor are allowed to attempt to do so.`
通过这两段描述,我们应该能很清楚的看出 Synchronized的实现原理
Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
我们再来看一下同步方法的反编译结果:
package com.paddx.test.concurrent;public class SynchronizedMethod { public synchronized void method() { System.out.println("Hello World!"); }}
反编译结果
![在这里插入图片描述](https://img-blog.csdn.net/20181007101635181?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3cxNzgxOTE1MjA=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)从反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。 其实本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。
有了对Synchronized原理的认识,再来看上面的程序就可以迎刃而解了。
Synchronized是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用户态转换到内核态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。
因此,这种依赖于操作系统Mutex Lock所实现的锁我们称之为“重量级锁”。JDK中对Synchronized做的种种优化,其核心都是为了减少这种重量级锁的使用。JDK1.6以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了“偏向锁”和“轻量级锁”。无锁 --> 偏向锁 --> 轻量级 --> 重量级